
P A G E L A Y O U T W I T H H T M L88 22

In the last chapter we described how HTML devel-

oped, beginning with the most basic structural tags,

then adding design features willy-nilly with each new

browser release until, at last, a truce was reached

around HTML 4.0, which established a standard

layout method: applying style sheets to structural

elements, just as designers are used to doing in

other media. Style sheets, with their ability to control

position on the page as well as typographic settings,

should finally provide a working solution to Web page

layout. Until the world is using browsers that support

the new standard, though, designers need to design

pages with the entire history of HTML in mind. In

this chapter, we’ll show how layout effects can be

achieved with a variety of methods and describe the

benefits of each approach.

Page Layout
With HTML

Structural Tags: The Building Blocks
of HTML Layout

Using Structural Tags for Layout

Controlling Layout with <PRE>

HTML Extensions and HTML 3.2

Page Layout With Tables

Dividing the Window With Frames

Specifying Layout With Style Sheets

Boxes: The Layout Model of CSS

CSS Positioning

HTML’s design capabilities have come a long way from the earliest

days, when browsers simply stacked each element, one after another,

in the browser window, flush left. First, Netscape extensions and table

layout tags added tools for creating grids and white space. And now,

full control over layout and typography are at hand with HTML style

sheets, which designers can use to specify typeface, leading, indents,

and even exact placement for each page element.

88 33P A G E L A Y O U T W I T H H T M L

Structural Tags: The Building
Blocks of HTML Layout
As we explained at the beginning of this book (ll21),

HTML has a lot in common with the typesetting sys-

tems used in the days before desktop publishing.

Codes embedded in the file tag each element. Then

the layout of each element is determined by specifi-

cations programmed into the typesetting software.

On the Web, the typesetting software is in each

browser, which interprets the HTML code according to

its own particular layout instructions. The tricky part

is that, for older browsers, designers have no control

over the typesetting specs that determine the look of

the page; they’re preprogrammed into the browser,

and nothing can affect them. Browsers that support

HTML 3.2 give designers control over a few different

effects—typefaces and the placement of graphics, for

instance—but rely on the built-in defaults for most

specs. With style sheets, designers at last gain that

control. Style sheets provide type specifications for

each element that override the built-in defaults—

returning to a traditional method of page layout.

Until most Web users have upgraded to browsers that

support style sheets, the trick to HTML layout is to

work with all these methods at once. Web designers

need to code pages so that they work in early

browsers—the ones that make up their own minds

about the layout of each element. Then, designers

can add HTML 3.2 style tags and style sheets for

those browsers that understand them.

The key to both approaches is structural tags. In

early browsers, the structural tags you use will control

layout. In browsers that support style sheets, the

structural tags provide the backbone on which you

hang the layout instructions that will determine the

page’s look.

We tend to do pages that support a variety of browsers, which is
much easier than supporting different pages for different browsers.
But the level of differentiation between the two sets of code is really
dependent on how much money the client is willing to invest.
S T E FA N F I E L D I N G - I S A A C S , A R T & S C I E N C E

P A G E L A Y O U T W I T H H T M L88 44

HTML’S STRUCTURAL TAGS name
a document element, not a particular
design, but most browsers use simi-
lar specifications for each tag. The
specifications shown here are those
used on a PC in Netscape Navigator.
Other browsers may use slightly dif-
ferent specs.

<BLOCKQUOTE> Block (indented) </BLOCKQUOTE> 12-pt. Times, indented 48 pixels from the left
and right quotation margins

<P> Paragraph 12-pt. Times, 16 pixels space above and below

<HR> Horizontal rule 2 pixel line, flush left

<H1> Level-1 head </H1> 24-pt. Times bold, flush left

<H2> Level-2 head </H2> 18-pt. Times bold, flush left

<H3> Level-3 head </H3> 14-pt. Times bold, flush left

<H4> Level-4 head </H4> 12-pt. Times bold, flush left

<H5> Level-5 head </H5> 10-pt. Times bold, flush left

<H6> Level-6 head </H6> 8-pt. Times bold, flush left

<DIR> Directory list </DIR> 12-pt. Times indented 48 pixels, preceded by a bullet,
indented 36 pixels. starts a new item.

<DL> Definition list </DL> <DT> (definition term) 12-pt. Times, flush left
<DT> </DT> <DD> (definition) 12-pt. Times, indented 48 pixels
<DD> </DD>

<MENU> Menu list </MENU> 12-pt. Times indented 48 pixels, preceded by a bullet,
indented 36 pixels. starts a new item.

 Ordered (numbered) list 12-pt. Times, indented 48 pixels, first line preceded by
 Arabic numeral and indented 33 pixels. (The type=

attribute can be used to change the numbering style to
upper- or lowercase letters or Roman numerals.)
 starts a new item.

 Unordered (bulleted) list 12-pt. Times, indented 48 pixels, first line preceded
 by a bullet and indented 36 pixels. (The type=

attribute can be used to change the bullet style.)
 starts a new item.

START TAG DEFINITION END TAG SPECIFICATION

88 55P A G E L A Y O U T W I T H H T M L

Using Structural Tags
for Layout
Used as they were meant to be, structural tags create

the kind of layout you might have last used typing up

a college term paper: a couple levels of heads, double

spaces between flush-left paragraphs, and one basic

typeface, Times. In short, the preset styles create

a lowest-common-denominator layout—readable

but boring.

The default settings are usually the same from browser

to browser. Text tagged <BLOCKQUOTE> will usually

be 12-point Times, indented about half an inch on

each side, for example.

Structural tags aren’t really meant for design. Using

HTML as it was meant to be used means simply tag-

ging each element appropriately: <H1> for a top-level

head, for instance, and <BLOCKQUOTE> used only for

indented quotations. (This ensures that HTML files

can be used, according to the tenets of SGML, in

other applications as well.) Of course, that leads to

a very boring page, and HTML doesn’t have enough

structural tags to label any except the most basic ele-

ments, anyway, so very few page authors actually use

HTML that way.

Instead, designers quickly figured out that they could

use HTML tags for their design attributes, rather than

their structural purpose. If they wanted their text in

http://www.w3.org/consortium/

USING HTML 2.0 as it was intended
results in a lowest-common-denominator
layout reminiscent of a college term
paper—or word processing circa 1983.

14-point Times rather than the default 12-point, they

could simply tag all their text <H3>. A half-inch margin

around text could be achieved by tagging all the text

with <BLOCKQUOTE>. Two <BLOCKQUOTE> tags result

in a deeper margin. Because the basic tags are so few,

and because the available typefaces are, usually, lim-

ited to two, the variety is limited. In the early days of

the Web, though, this was the only available method

of exerting any control at all over the look of pages.

Designers should remember that this approach isn’t

foolproof. The defaults you count on may change from

browser to browser and even from one release of a

particular browser to another. And all your assumptions

are blown as soon as independent-minded readers

decide to set their own preferences. Text you thought

safe at 12-point Times might actually be seen as 16-

point Chancery Script.

P A G E L A Y O U T W I T H H T M L88 66

AD319
http://www.art.uiuc.edu/@art/ad319/ad319.html

AVALANCHE
http://www.avsi.com/

ED STASNY
http://www.sito.org/synergy/

USING STRUCTURAL TAGS as they were never
meant to be used adds new layout options. Using
five <BLOCKQUOTE> tags (as in the ad319 page,
left) creates a deep indent. Multiple tags (as
used in the page from Avalanche’s old site, above)
creates a similar white space. (The headings in
Avalanche’s page were created using <PRE>.) The
Sito site uses straightforward list layout, but adds
space around its intro text with <BLOCKQUOTE>.
Using HTML 2.0 codes, like these, rather than the
HTML 3.2 table tags or the HTML 4.0 style sheets
that would create the same effect, ensures that
the intended effect will be seen in even the oldest
browsers.

88 77P A G E L A Y O U T W I T H H T M L

JUL IE T MART IN
http://www.bway.net/~juliet/
oooxxxooo/Parenthesis.html

TEXT TAGGED AS <PRE> is laid out
exactly as it is typed in the HTML file
(right), allowing designers to lay out
text precisely. By default, <PRE> text
is displayed in the Courier typeface.

Controlling Layout
With <PRE>
An HTML 2.0 trick that deserves special mention is

the <PRE> (preformatted text) tag, which was created

to let page authors specify an exact layout for text.

Any text between <PRE> and </PRE> tags is displayed

exactly as it is typed, including extra spaces and any

returns (which are usually ignored inside other tags).

Using <PRE>, designers can arrange text painstaking-

ly with the space bar—an effect especially useful for

poetry or for other layouts in which the placement of

sparse text is key. By default, most browsers display

<PRE> text as 10-point Courier.

START TAG ATTRIBUTES END TAG EXPLANATION

<PRE> </PRE> Marks text that should be laid out exactly as typed

P A G E L A Y O U T W I T H H T M L88 88

Orphaned Tags
Most of the extensions introduced by Netscape and
Microsoft were deemed useful and were later incor-
porated into official HTML. But not all of them. The
history of HTML is littered with tags that failed to
enter the language because they were considered
too annoying or too antithetical to HTML principles or
because they were replaced by standard HTML meth-
ods for achieving the same effects.

<BLINK> (blinking text), introduced by Netscape in
Navigator 1.1, fell into the first category. Other
orphaned tags include Microsoft’s <MARQUEE> (a
scrolling message across the browser window, intro-
duced in Internet Explorer 2.0), and Netscape’s
<MULTICOL>, <SPACER>, and <LAYER> tags, which
were introduced with Navigator 3.0 and 4.0, after the
Web community clearly saw that such specific style
tags were the wrong way to go about extending HTML.

These tags live on the browsers of the companies
that introduced them, largely so that any pages cre-
ated with them in the past will display correctly. But
few Web designers still use them.

HTML Extensions and HTML 3.2
The layout tags described in HTML 3.2 actually crept

onto the Web bit by bit, introduced piecemeal by early

versions of Netscape’s and Microsoft’s browsers, as

Netscape or Microsoft extensions (ll74). These exten-

sions included new structural tags, like those for

tables (ll90). Here, we’ll talk about what we called

style tags in the last chapter (ll72): tags that were

designed to control the way elements look on screen.

For layout purposes, perhaps the most important of

the extensions was the align= attribute for the

tag (ll124), which allowed designers to wrap text

around graphics. Used straightforwardly, the new

attributes allowed designers to place graphics at the

right or left margin, with text wrapping around them as

in a magazine layout. The accompanying vspace= and

hspace= attributes were used to create space be-

tween the graphic and the surrounding text. Even

more cleverly, though, designers used it to wrap text

around graphics with transparent backgrounds (ll122),

opening up expanses of white space on HTML pages

for the first time.

Other tags that gave designers a bit of control were

the <CENTER> tag, allowing designers to center text

and graphics on the page, and Microsoft’s leftmargin=

and topmargin= attributes for the <BODY> tag, creating

a way to add space around the edges of a page with-

out resorting to <BLOCKQUOTE>.

THE ALIGN= ATTRIBUTE for the
tag lets designers wrap text around
graphics. The hspace= and vspace=
attributes create space between the
image and the surrounding text.

JACK SZWERGOLD/ANDREW WELYCZKO
http://www.theonion.com/onion3307/clintondropsdabomb.html

88 99P A G E L A Y O U T W I T H H T M L

As you can see, the controls were far from rich, but

Web designers got some great mileage out of them,

creating some surprisingly elegant pages.

The next step forward, introduced in Navigator 2.0

and adopted by Internet Explorer 3.0 (and then canon-

ized by HTML 3.2) were the table and frame tags,

structural tags that allowed designers to create a real

grid for Web pages.

START TAG ATTRIBUTES END TAG EXPLANATION

<BODY> </BODY> Marks the text to be displayed in the browser window

leftmargin=n Sets a left margin, described as a number of pixels

topmargin=n Sets a top margin, described as a number of pixels

<CENTER> </CENTER> Marks text that should be centered in the window

<HR> Inserts a horizontal rule

align="right" OR "left" OR "center" Specifiies the rule’s placement

color="#RRGGBB" OR "name" A color for the rule, specified in hexadecimal or as a
color name

noshade Removes the rule’s default drop shadow

size=n The width (height) of the rule, in pixels

width=n OR "n%" The length of the rule, in pixels or as a percentage of the
window width

<MULTICOL> </MULTICOL> Marks text that should be set in multiple columns

cols=n The number of columns

gutter=n The amount of space between columns, in pixels

width=n The width of the column set, in pixels

<SPACER> </SPACER> Creates a blank space in the page layout

align="left" OR "right" OR "top" OR For type=block, tells the browser how to wrap the adjoining
"texttop" OR "middle" OR "absmiddle" OR text around the space
"baseline" OR "bottom" OR "absbottom"

height=n, width=n For type=block, the width and height of the empty space

size=n For type=horizontal or type=vertical, the size of the
empty space, in pixels

type="horizontal" OR "vertical" OR "block" Tells the browser to create a space in the current line
(horizontal), to create a vertical space above the next
item (vertical), or to create a rectangular space (block)

P A G E L A Y O U T W I T H H T M L99 00

BILL DOMONKOS
http://www.bdom.com/documents/homepage.html

Page Layout With Tables
HTML’s table layout tools were designed with tradi-

tional tables in mind—the kind that hold statistics

within a page—but designers quickly adopted them

for structuring whole pages. With tables, designers

can specify different-width columns to break up a

page horizontally and discrete rows to control vertical

space. Table cells can include text, graphics, and

even other tables.

HTML tables don’t provide the same kind of flexibility

you can get from page layout programs such as

QuarkXPress or PageMaker. The grids they create

can’t accommodate overlapping columns or some

other niceties that add the sophisticated asymmetry

possible with print layouts. In the environment of the

Web, tables can also be problematic for other rea-

sons. Complex tables can choke some browsers, and

the fact that visitors’ font and screen sizes are unpre-

dictable means that fixed-size rows and columns may

cut off parts of the table’s content from view. (Table

cells can also be flexible, expanding with the cells’

contents and reflowing as viewers change their window

sizes.) On the other hand, tables do allow designers to

specify, to the pixel, exactly where text or images will be

placed on a page—a control they never had before.

<HTML><HEAD><TITLE>B Domonkos Home</TITLE></HEAD>
<BODY BGCOLOR="#000000"
BACKGROUND="../images/backhome.gif">

<TABLE CELLPADDING="0">
<TR>
<TD WIDTH="349" HEIGHT="68" ALIGN=RIGHT VALIGN=BOTTOM>
<IMG SRC="../images/fly.gif" HEIGHT="61"
WIDTH="84" BORDER="0"></TD>
</TR>
</TABLE>

<TABLE CELLPADDING="0">
<TR>
<TD WIDTH="428" HEIGHT="52" ALIGN=RIGHT VALIGN=TOP>
<IMG SRC="../images/eye.gif" HEIGHT="57"
WIDTH="82" BORDER="0"></TD>
</TR>
</TABLE>

<TABLE CELLPADDING="0">
<TR>
<TD WIDTH="320" HEIGHT="61" ALIGN=RIGHT VALIGN=BOTTOM>
<IMG SRC="../images/hand.gif" HEIGHT="60"
WIDTH="81" BORDER="0"></TD>
</TR>
</TABLE>

<TABLE CELLPADDING="0">
<TR>
<TD WIDTH="361" HEIGHT="110" ALIGN=RIGHT VALIGN=BOTTOM>
<IMG SRC="../images/blue.gif"
HEIGHT="66" WIDTH="92" BORDER="0"></TD>
</TR>
</TABLE>

HTML TABLES let you position items at particular
pixel locations on screen. In this example, the
designer uses table cells of different widths and
heights to stagger the graphic buttons (aligned at
the bottom right of each cell) on top of a back-
ground graphic.

99 11P A G E L A Y O U T W I T H H T M L

AMY FRANCESCHIN I/DAV ID KARAM/MICHAEL MACRONE/OL IV IER LAUDE
http://atlasmagazine.com/photo/laude_despair/index.html

LOOK ING - DES IGN FOR COMMUNICAT ION
http://www.lacountyarts.org/ford.html

Co
py

rig
ht

 ©
 1

99
6

N
at

io
na

l G
eo

gr
ap

hi
c

So
ci

et
y.

Al
l r

ig
ht

s
re

se
rv

ed
.

AVALANCHE
http://www.ear1.com/

HTML TABLES can create strict grids
or more freeform shapes.

P A G E L A Y O U T W I T H H T M L99 22

START TAG ATTRIBUTES END TAG EXPLANATION

<TABLE> </TABLE> Surround all the tags that make up the table

align="left" OR "right" OR "center" The table’s alignment in the window

background="URL" An image file to be used as the table’s background

bgcolor="#RRGGBB" OR "name" The color of the table’s background, using RGB values (expressed in hexadecimal) or a color name

border=n A width for the table’s border, in pixels. border=0 means no border.

cellpadding=n The space between each cell’s border and its contents, specified in pixels

cellspacing=n The space between each cell’s contents, specified in pixels

cols=n The number of columns in the table

height=n, width=n or n% The table’s total height and width, specified in pixels or (for width) as a percentage of the window size

rules="none" OR "groups" OR "rows" OR "cols" OR "all" Specifies which rules will appear in the table

<CAPTION> </CAPTION> Creates a caption for the table

<COL> Create column groupings. <COL> allows authors to set attributes for several columns at once; <COLGROUP> groups the columns
<COLGROUP> </COLGROUP> structurally, so that they will be laid out together in a browser window.

align="left" OR "right" OR "center" OR "justify" OR "char" The alignment of the cells’ contents

span=n The number of columns in the group

valign="top" OR "middle" OR "bottom" OR "baseline" The vertical alignment of the cell’s contents relative to its borders

width=n OR "0*" A default width for each column in the group. "0*" means each column should be just wide enough to hold its contents.

<TD> </TD> Mark the data (<TD>) or heading (<TH>) that goes in each table cell
<TH> </TH>

align="left" OR "right" OR "center" The data’s alignment in the cell

background="URL" An image file to be used as the cell’s background

bgcolor="#RRGGBB" OR "name" A color for the cell’s background

colspan=n The number of columns the cell spans

height=n, width=n OR n% The height and width of the table cell, in pixels or (for width) as a percentage of the table size

rowspan=n The number of rows the cell spans

valign="top" OR "middle" OR "bottom" OR "baseline" The vertical alignment of the cell’s contents relative to its borders

<THEAD> </THEAD> Group cells into a table heading, table footer, and table body, respectively. Browsers may scroll table bodies while leaving the
<TFOOT> </TFOOT> header and footer in place.
<TBODY> </TBODY>

<TR> </TR> Creates a new table row. <TR> and </TR> contain a set of table cells defined by <TD> and <TH>.

align="left" OR "right" OR "center" OR "justify" OR "char" The alignment of the contents of the row’s cells

bgcolor="#RRGGBB" OR "name" A color for the table row’s background

valign="top" OR "middle" OR "bottom" OR "baseline" The vertical alignment of the row’s contents relative to the cell’s borders

<TD>

HEIGHT=200

sm_circ.gif

lg_circ.gif

rectang.gif

bar.gif

<TD>

<TD>

<TD>

<TD COLSPAN=2>

<TR>

<TABLE>

CELLPADDING="20" BORDER="1"CELLSPACING="20"

WIDTH="535"

<TR>

<TR>

99 33P A G E L A Y O U T W I T H H T M L

AN HTML TABLE is set up from a series of rows and col-
umns. The <TABLE> tag’s width=, height=, and other
attributes define the overall dimensions of the table.
Then the table is constructed row by row. A <TR> (table
row) tag, creates each row; <TH> (table head) and <TD>
(table data) tags mark the content of each cell. Cells can
hold any kind of data, including graphics or other media.

<HTML>
<HEAD><TITLE>TABLE</TITLE></HEAD>
<BODY BGCOLOR="WHITE">

<TABLE WIDTH="535" BORDER="1" CELLSPACING="20"CELLPADDING="20">

<TR ALIGN=LEFT>

<TD VALIGN="TOP" HEIGHT="200">

</TD>

<TD VALIGN="bottom">

</TD>

</TR>

<TR ALIGN=LEFT>

<TD VALIGN="TOP">
The contents of each cell is embedded between <TD> (table
data) tags. It can include graphics, plug-ins, or even other tables. You
can align cell contents horizontally and vertically in a number of ways
within the cell. The text (or other content) is inset by the number of
pixels set in the cellpadding= attribute. You can set a specific height
and width for a cell using the <TD> or <TH> tag's height=
and width= tags. If you don't use those attributes, the cell will be as
wide and tall as it needs to be to fit the cells' contents.

</TD >

<TD>

</TD>

</TR>

<TR ALIGN=CENTER>

<TD COLSPAN=2>

</TD>

</TR>

</TABLE>

</BODY>
</HTML>

P A G E L A Y O U T W I T H H T M L99 44

JASON HUANG/YOSHI SODEOKA
http://www.word.com/desire/garterbelt/

frames
An HTML feature that lets designers
split the browser window into
separate units, each of which can
hold a separate HTML file and can
scroll and be updated separately
from the rest of the window.

inline frame
A frame that is not part of a frame-
set but is defined individually.

EACH PAGE OF THIS STORY (a feminist’s mus-
ings on the significance of wearing sexy clothes)
creates a different outfit out of frames. Readers
literally undress the text. When they drag a frame
border to resize the frame, text flows into the new
window.

Dividing the Window
With Frames
Similar in some ways to tables, but offering some dif-

ferent advantages (and disadvantages) are frames.

Like tables, frames let designers divide a window

into any number of horizontal and vertical rows and

columns. But unlike table cells, each frame can hold

a separate HTML file, and each frame can scroll

separately.

Frames can be individually named. That name can then

be used as the target for a hyperlink (ll78) so that a

click in one frame can change the contents of another.

This makes frames a natural solution for setting off

the navigation controls for a site; the navigation con-

trols always remain on screen while new pages are

loaded into a separate frame.

Like table rows and columns, frames can be fixed in

size or scale to fit the content. They can also be de-

signed with or without borders and scrollbars.

HTML 4.0 includes a new feature called inline frames,

free-floating frames that can be placed at any pixel

coordinate within a window.

In the opinion of many Web users, frames have been

a mixed blessing. You can’t print or bookmark a page

that’s inside a frameset, and some users find navi-

gating within frames confusing. Even given these

caveats, though, frames can sometimes provide a

practical solution to Web design problems.

99 55P A G E L A Y O U T W I T H H T M L

AVALANCHE
http://www.oneclub.com/

ROGER LOS
http://www.austinhealey.com/big.html

LANCE ARTHUR
http://www.glassdog.com/the_lab/toppage.html

WINNERS OF THE ONE SHOW are listed in
the right-hand frame of this site. Clicking on
a link there displays the selected work in the
large center frame.

SITE NAVIGATION is set off in a frame across
the bottom of the Austin-Healey site. On this
page, a timeline fills the upper frame; users
scroll horizontally to move through the years.

A CONTROL PANEL and the site’s branding
are set off in frames across the top and left
side of this site for GlassDog Labs.

Frames are a great concept, but the way they’re implemented
doesn’t work that well. We no longer use them.
F R E D S O T H E R L A N D , C N E T

P A G E L A Y O U T W I T H H T M L99 66

START TAG ATTRIBUTES END TAG EXPLANATION

<FRAMESET> </FRAMESET> Encloses all the tags that make up a set of frames

border=n Sets a border (1 or "yes") or omits a border (0 or "no") around a
frame. (Microsoft’s browser uses the numbers, Netscape’s the words.)

bordercolor="#RRGGBB" OR "name" A color for the border, specified as RGB values (in hexadecimal)
or as a color name

cols="col1, col2, col3, ..." Sets up a frameset as a set of "columns." The set of columns is
specifed by giving a width for each one. Widths can be specified in
pixels, as a percentage of the window size, or as an asterisk (*),
meaning that the column should take up the remaining space. If
more than one column is specified with an asterisk, the space is
divided evenly among them.

frameborder=0 OR 1 OR "yes" OR "no" Sets a border (1 or "yes") or omits a border (0 or "no") around
a frameset. (Microsoft’s browser uses the numbers, Netscape’s
the words.)

rows="row1, row2, row3,..." Sets up a frameset as a set of "rows." The set of rows is specifed by
giving a width for each one. Widths can be specified in pixels, as a
percentage of the window size, or as an asterisk (*), meaning that
the row should take up the remaining space. If more than one row is
specified with an asterisk, the space is divided evenly among them.

<FRAME> Specifes the attributes of one frame within a frameset

bordercolor="#RRGGBB" OR "name" A color for the border, specified as RGB values (in hexadecimal)
or as a color name

frameborder=0 OR 1 OR "yes" OR "no" Sets a border (1 or "yes") or omits a border (0 or "no") around
a frame.

marginheight=n Creates a margin at the top and bottom of the frame
(specified in pixels)

marginwidth=n Creates a margin at the left and right sides of the frame
(specified in pixels)

name="name" A target name for the frame (used by <A> tags to send
linked files to that particular frame)

noresize Prevents users from resizing the frame (by omitting the resize box)

scrolling="yes" OR "no" OR "auto" Includes or omits a scroll bar for the frame. By default (or
using "auto") a scroll bar appears if the frame’s contents go
beyond its borders.

src="URL" The URL of the file to be placed in the frame

<NOFRAMES> </NOFRAMES> Marks content that should be displayed in browsers that don’t
support frames. Browsers that support frames ignore any code
marked with <NOFRAMES>.

FRAMESETS ARE SET UP either as a set of rows
or as a set of columns. Multiple framesets can be
nested to create columns within rows, or vice
versa. Once the frameset is defined, individual
<FRAME> tags are used to name the content and
set the style of each frame; a separate file is
loaded into each frame. The <NOFRAMES> tag
sets off copy that will be shown on browsers
(prior to Navigator 2.0 and Internet Explorer 3.0)
that don't support frames. The <IFRAME> tag,
new in HTML 4.0, creates an inline frame.

99 77P A G E L A Y O U T W I T H H T M L

FILE 2

FILE 1

FILE 3 FILE 4 FILE 5

START TAG ATTRIBUTES END TAG EXPLANATION

<IFRAME> Creates an “inline frame,” which flows with the document text

frameborder=0 OR 1 OR "yes" OR "no" Sets a border (1 or "yes") or omits a border (0 or "no") around a
frame. (Microsoft’s browser uses the numbers, Netscape’s the words.)

hspace=n, vspace=n The horizontal and vertical space, in pixels, between the frame
and the surrounding text

height=n, width=n The height and width of the frame, in pixels

marginheight=n Creates a margin at the top and bottom of the frame
(specified in pixels)

marginwidth=n Creates a margin at the left and right sides of the frame
(specified in pixels)

name="name" A target name for the frame (used by <A> tags to send linked
files to that particular frame)

scrolling="yes" OR "no" OR "auto" Includes or omits a scroll bar for the frame. By default (or
using "auto") a scroll bar appears if the frame’s contents go
beyond its borders.

src="URL" The URL of the file to be placed in the frame

<HTML>
<FRAMESET rows="*,*,*">

<FRAME src="file1.html">
<FRAME src="file2.html">
<FRAMESET cols="*,*,*">

<FRAME src="file3.html">
<FRAME src="file4.html">
<FRAME src="file5.html">

</FRAMESET>
</FRAMESET>
</HTML>

<HTML>
<HEAD>
<TITLE>FILE1</TITLE>
</HEAD>
<BODY>
<H1>FILE1</H1>
</BODY>
</HTML>

<HTML>
<HEAD>
<TITLE>FILE2</TITLE>
</HEAD>
<BODY>
<H1>FILE2</H1>
</BODY>
</HTML>

<HTML>
<HEAD>
<TITLE>FILE3</TITLE>
</HEAD>
<BODY>
<H1>FILE3</H1>
</BODY>
</HTML>

<HTML>
<HEAD>
<TITLE>FILE4</TITLE>
</HEAD>
<BODY>
<H1>FILE4</H1>
</BODY>
</HTML>

<HTML>
<HEAD>
<TITLE>FILE5</TITLE>
</HEAD>
<BODY>
<H1>FILE5</H1>
</BODY>
</HTML>

FILE1.HTML

FILE2.HTML

FILE3.HTML

FILE4.HTML

FILE5.HTML

P A G E L A Y O U T W I T H H T M L99 88

Specifying Layout With
Style Sheets
Beginning with HTML 3.2, HTML includes support

for a layout solution that, at last, strikes a balance

between designers’ need to control the layout of Web

pages and HTML’s premise of specifying structure, not

layout, to ensure a document’s usefulness across appli-

cations. That solution, which promises to revolutionize

Web design, is style sheets.

Web style sheets work much like the style sheets used

in popular word processing and page layout programs.

Standard HTML structural tags (<H1>, <P>, and so

on) mark each element. Instead of using default lay-

outs for each element, though, browsers will look for

specifications—style sheets—defined by the designer.

(Browsers will fall back on the default if no style sheets

are provided or if they don’t support style sheets.)

Just as with style sheets in word processing and

page layout programs, a single style definition can

be used to style every instance of a certain element

with a single command, and designs for entire docu-

ments—even entire sites—can be easily changed by

simply changing the centrally defined style attributes.

Exactly what style sheets can do is controlled by the

specific style sheet language you use. Right now, the

standard style sheet language for the Web is called

cascading style sheets (CSS for short). Other style

cascading style sheets (CSS)
The most widely supported style
sheet language for Web publishing.

CSS1
The first version of the cascading
style sheet language.

DSSSL
Document semantics and style spec-
ification language, a popular style
language for SGML publishing.

style sheet
Layout specifications added to an
HTML file.

XSL
Extensible style language, a style
language under development as a
companion to XML.

<STYLE>
H1 { font-family : Helvetica ; font-size : 14 pt ; color : red }
H2 { font-family : Helvetica ; font-size : 12 pt ; color : black }

</STYLE>

STYLE SHEETS ARE simply lists of layout specifications for
different HTML elements. In CSS, each specification consists
of a selector, which names the element the styles apply to,
and a list of style properties and their values, enclosed in
brackets. (The CSS specification defines the possible prop-
erties and values.) A colon separates the property from its
value. Multiple property settings can be provided for a single
element; in such a list, the property and value pairs are sep-
arated by semicolons.

SELECTOR PROPERTY VALUE

99 99P A G E L A Y O U T W I T H H T M L

sheet languages, such as DSSSL (document semantics

and style specification language), were developed for

use with other applications of SGML. And XSL (ll145),

the extensible style language, is being developed as

a companion for XML (ll142). For now, though, CSS

is center of attention: CSS1 (the first version of CSS)

is supported by Microsoft’s and Netscape’s current

browsers.

A style sheet is simply a list of layout specifications for

each HTML element in a document. CSS gives a lot

more control over HTML layout than has any solution

that has come before, letting designers specify such

attributes as point size, line spacing (leading), and in-

dents for text. And CSS layout specs can use standard

design and typographic measurements like points,

picas, and ems, as well as pixels and percentages, to

describe a page.

You can add stylesheets to your Web pages in a few

different ways, depending on how widely you want

the styles to be used. You can import external style

sheets (describing, say, standard styles used by your

company or publication) using the <LINK> tag in a

document’s heading. You can use the HTML <STYLE>

tag in the document’s heading to add document-wide

styles. Or you can use a style= attribute with just

about any HTML tag, to describe styles that pertain

only to that element. (For instance, you could add a

style property to a <DIV> tag to set styles for the ele-

ments within that division or to a <P> tag to affect a

What Cascading Means
The name “cascading style sheets” comes from the
way style sheets are applied to a document’s ele-
ments. A certain element may have several styles
associated with it. The browser uses a default style
sheet for everything it displays. Site visitors may also
specify a particular style sheet they like as their own
default. The page author may import a companywide
style sheet using the <LINK> tag, apply additional
document-specific styles using the <STYLE> tag in
the page heading, and then add special treatments
to par ticular paragraphs or phrases in the docu-
ment’s body. The CSS specification spells out exactly
which styles get priority in such cases.

As a rule, each style definition listed in the chart at
left takes precedence over the one under it: The
user’s preference overrides the browser’s default, and
as a rule, the author’s styles override the user’s.
(Users can override author styles by not accepting
external style sheets or by naming some of their pref-
erences as “important.”) And more specific specifica-
tions override less specific sets.

Specific to element instance

Specific to element class

Defined by author as important

Defined by user as important

Included with page

User default

Browser default

SEVERAL STYLE SHEETS can be com-
bined in a single document. CSS’s cas-
cading order defines which style defini-
tions take precedence when more than
one is defined.

START TAG ATTRIBUTES END TAG EXPLANATION

<STYLE> </STYLE> Enclose the style sheets for an HTML document

type="MIME-type" The style sheet language, defined as a MIME type
(e.g., css/text)

media="screen" OR "print" OR "projection" The media types the style sheet should be used for
OR "braille" OR "aural" OR "all"

<LINK> </LINK> Links an external document to the current file

href="URL" The location of the linked document

rel="description" The relationship of the linked file to the current
document. For style sheets, the setting would be
rel="stylesheet"

type="MIME-type" The MIME type of the linked content; for style sheets,
usually "text/css"

P A G E L A Y O U T W I T H H T M L11 00 00

single paragraph.) For style sheets to work, browsers

must support those tags (introduced with HTML 3.2)

as well as the style sheet language itself.

CSS coding is made somewhat simpler by the idea

of inheritance. In CSS, an element inherits the style

attributes of its parent element: for example, text

tagged as would inherit the settings from the

<P> (or other) element that contains it. A <P> element

could inherit styles given to a <DIV> element above

it, or even to the <HTML> tag itself. That way, a page

author can define general page attributes (such as a

standard typeface or page margin, for instance) just

once, then add to or override those styles as needed

for particular elements.

An especially powerful use of style sheets is the ability

to go beyond the basic HTML tag set by creating ele-

ment classes. Say you had a document for which you

wanted to specify two types of paragraph styles: one

for standard paragraphs, with an indent on the first

line, and another, with no indent, for the first para-

graph under a heading. You could tag each standard

paragraph with the standard <P> style and create a

special class of the <P> tag for the first paragraphs

under heads, using the HTML 3.2 class= attribute (<P

class="first">, for instance). Your style sheet could

then provide styles for each type (as shown on the

example on this page). In that way, you can essentially

extend the HTML tag set indefinitely.

<HEAD>
<TITLE>Style Sheet</TITLE>
<STYLE TYPE="text/css">
P {

font-family: Meta-Normal, Syntax, Helvetica, Arial;
font-size: 40pt;
text-indent: 2 em;
text-align: justify;
line-height: 50 pt;
}

.first {
text-indent: 0 em;
}

</STYLE>
</HEAD>

<BODY BGCOLOR="white">

<P CLASS="first">The first paragraph is tagged with the subclass “first,” so it
has no indent. . </P>

<P> The rest of the paragraphs use the regular P style, which uses the font Meta
Normal (if it’s installed), set at 40 points on 50 points of leading (line spacing).
Each regular paragraph gets a 2-em indent.</P>

<P> CSS’s rules of inheritence specify that a subclass inherits the specifications
from its parent style unless a new value is specified. So the .first style uses all
the specifications from the parent P style except for text-indent, for which a spe-
cial value is supplied. </P>

</BODY>

class
In HTML 4.0, a group of elements
defined by the author. You add an
element to a class using the class=
attribute. With cascading style
sheets, designers can assign layout
attributes to all the members of a
class.

inheritance
In CSS, the principle that elements
use the same style properties as
any element that contains them,
unless those properties are specifi-
cally overridden.

THE STYLE SHEET SHOWN HERE creates a
standard style for paragraphs and another for a
special class of the P element (P.first) used for
first paragraphs under headings. Notice the
use of the font property, a shorthand notation
you can use to combine several font speci-fica-
tions. Also notice CSS’s inheritance rules at
work here. The subclass (P.first) inherits all the
specifications from the parent element (P), so
only the differences need to be specified in the
subclass’s style definition.

11 00 11P A G E L A Y O U T W I T H H T M L

CSS2

CSS1

VERSION 2.0 3.0 4.0

Netscape
Navigator

Microsoft
Internet Explorer

BOTH NETSCAPE AND MICROSOFT
support cascading style sheets in their
browsers, beginning with Microsoft
Internet Explorer 3.0 and Netscape
Navigator 4.0. Current versions of both
browsers support most of CSS1 and
the parts of CSS2 having to do with
CSS positioning.

ATLAS MAGAZ INE/CATHER INE KARNOW
http://www.atlasmagazine.com/photo/karnow6/index_C.html

ATLAS MAGAZINE uses linked style sheets
to apply consistent styles across the publi-
cation. Each element is named as part of a
class, which has a corresponding style.

.text1 { font: 12px/16px 'Courier New', CourierNew, monospace; }

.text2 { font: bold 11px/16px Verdana, Arial, sans-serif; }

.text3 { font: bold 11px/16px Verdana, Arial, sans-serif; color:
#94992b; }

.text4 { font: bold 11px Verdana, Arial, sans-serif; color: #94992b; posi-
tion: relative; top: 3px; }

.text5 { font: bold 11px/16px Verdana, Arial, sans-serif; text-align: right;
margin-right: 24px; }

.caption { font: bold 11px/18pt Verdana, Arial, sans-serif; margin-right:
24px; text-align: right; }

.cap2 { font: bold 10px/16px Verdana, Arial, sans-serif; color:
#94992b; }

.debold { font-weight: normal; }

A:link { text-decoration: none; }

P A G E L A Y O U T W I T H H T M L11 00 22

Boxes: The Layout Model
of CSS
To begin to understand the layout capabilities of CSS,

you must first understand that CSS treats each HTML

element as if it were in a box. That means you can

add things like background colors, borders, and other

details to any element, just as if it were in its own

table cell. CSS’s box properties can be applied to any

HTML element, allowing you to adjust the margin and

“padding” around it as well as adding a border of any

style or color. In addition, you can use CSS’s color

properties to not only color the type but also to add a

background image or background color behind the ele-

ment, filling the element’s box.

By default, an element’s box will grow to fit the content

inside it, but you can also use the width and height

properties to specify a certain size for the box. (If the

size is too small for the box’s content, a scroll bar

can be made to appear, as if the element were in its

own frame) (ll94).

Understanding CSS boxes and the CSS properties

that control them will let you fine-tune a page’s mea-

surements to an unprecedented degree. It will also

help you understand CSS positioning, a way of using

CSS to create complex, layered layouts, as we’ll de-

scribe in the next section.

IN CSS, EVERY ELEMENT is treated
as if it were in a box. CSS properties
can be used to control things like the
box’s size and the use of padding,
borders, and margins. Other proper-
ties can be used to add background
colors, scroll bars, and other fea-
tures to the box, as if the box were
its own frame.

<HTML>
<HEAD>
<TITLE>cssbox</TITLE>
<STYLE>

#square{

background-color: green;
padding: 15 px;
border-width: 3 px;
border-color: red;
border-style: solid;
margin-top: .5 in;
margin-bottom: 40 px;
margin-left: 40 px;
margin-right: 2 in;
width: auto;
height: auto;
clear: both

}

</STYLE>

<BODY BGCOLOR="white">

<DIV ID="square">

Come back, the Caterpillar called after her. I’ve something important to
say!

</DIV>

<BLOCKQUOTE>This sounded promising, certainly. Alice turned and
came back again.</BLOCKQUOTE>

</BODY>
<HTML>

11 00 33P A G E L A Y O U T W I T H H T M L

CSS Positioning
CSS positioning is not actually part of CSS1 but was

introduced to the W3C as a separate proposal and

was adopted by both Netscape and Microsoft in ver-

sion 4.0 of their browsers. (The principles of CSS are

built into CSS2.) With CSS positioning, you simply

add CSS properties to tell the browser just how and

where you want each element’s box placed on screen.

The first decision to make is how you want the box

positioned: with “absolute” or “relative” positioning.

Absolute positioning places the element at a named

coordinate in the browser window. Relative positioning

positions it relative to its default position or to anoth-

er element that contains it. Another positioning prop-

erty, float, floats the element right or left, to the par-

ent element’s boundary, and lets text flow around it.

The position on the page is set with the top and left

properties, measured from the top left of the browser

window (or parent element) and described in terms of

an x-y grid. (You can specify placement in just about

any unit you wish: pixels, ems, points, picas, or per-

centages of window size.) You can also specify a

z-index, or layering order, for the element, giving the

item a position above or below other elements on the

page. By default, the element is positioned wherever

it falls in the flow of the document, with a box size

large enough to contain the element’s content, and a

<HEAD>
<TITLE>Absolute Positioning</TITLE>
<STYLE>
#square{ position: absolute; top: 0px; left: 0 px; z-index: 0; }

#circle{ position: absolute; top: 80px; left: 80 px; z-index: 1; }

#triangle{ position: absolute; top: 160px; left: 160 px; z-index: 2; }
</STYLE>
</HEAD>

<BODY BGCOLOR="white">

<DIV ID="square">
</DIV>

<DIV ID="circle">
</DIV>

<DIV ID="triangle">
</DIV>

</BODY>

CSS POSITIONING lets you name the
exact window coordinates for each ele-
ment. The top and left properties name
the window coordinates for each iitem.
The z-index= property defines its layer-
ing position. The <DIV> tag separates
the document into its component
units, and its id= attribute provides a
name by which each document sec-
tion can be called from the style sheet.

z-index
In CSS positioning, the layering
order of an element. The term refers
to the element’s position in an x-y-z
Cartesian coordinate system.

P A G E L A Y O U T W I T H H T M L11 00 44

START TAG ATTRIBUTES END TAG EXPLANATION

<DIV> </DIV> Groups the enclosed elements so that the attributes of the
<DIV> tag apply to those elements

align="left" OR "center" OR "right" OR "justify" The alignment of the grouped elements

id="name" A name for the group. In CSS positioning, this name is used
by the style sheet.

 Groups a set of words inside a block-level element

align="left" OR "center" OR "right" OR "justify" The alignment of the grouped words

id="name" A name for the group. In CSS positioning, the name is used
to identify the group in the style sheet.

CSS POSITIONING and JavaScript are used
to move the mannequin into position and
place her speech balloons on Fabric8, a
site that spotlights San Francisco's inde-
pendent clothing designers.

FABR IC8
http://www.fabric8.com/

<BODY BGCOLOR="#99CC66" TEXT="#000000" LINK="#663300"
VLINK="#669900" ALINK="#000000">

<DIV ID="lyrFeature" STYLE="position:absolute; left:10px; top:8px;
width:119px; height:30px; z-index:501" CLASS="nav">

<A HREF="feature.html" ONMOUSEOVER="rollover(1,'just one
of the many
great products we offer',event); return true;"
onmouseout="rollover(0,'',event)">feature

</DIV>

<DIV ID="lyrList" STYLE="position:absolute; left:130px; top:8px;
width:150px; height:30px; z-index:502" CLASS="nav">

<A HREF="list.html" ONMOUSEOVER="rollover(1,'join our

international scene',event)" ONMOUSEOUT="rollover(0,'',event)">
<NOBR>mailing list</NOBR>

</DIV>

<DIV ID="lyrLinks" STYLE="position:absolute; left:275px; top:8px;
width:150px; height:30px; z-index:503" CLASS="nav">

<A HREF="links.html" ONMOUSEOVER="rollover(1,'web styles we
dig',event)" ONMOUSEOUT="rollover(0,'',event)"><NOBR>linky
dinks</NOBR>

</DIV>

11 00 55P A G E L A Y O U T W I T H H T M L

Online: Page Layout With HTML
Cascading Style Sheets and CSS Positioning
http://www.hotwired.com/webmonkey/stylesheets/

http://www.microsoft.com/workshop/author/default.asp#css

http://www.useit.com/alertbox/9707a.html

http://www.w3.org/Style/css/

http://www.webreview.com/guides/style/

Dynamic HTML
http://www.dhtmlzone.com/

http://www.hotwired.com/webmonkey/dynamic_html/

http://www.insidedhtml.com/

http://www.microsoft.com/workshop/author/dhtml

http://www.projectcool.com/developer/dynamic/

http://www.webdeveloper.com/categories/advhtml/

http://www.webreview.com/wr/pub/Dynamic_HTML/

Frames
http://www.cnet.com/Content/Builder/Authoriing/Frames/

http://www.projectcool.com/developer/alchemy/04-frames. html

http://www.webreference.com/dev/frames/

Tables
http://www.projectcool.com/developer/alchemy/03-tables. html

z-index depending on the order in which the elements

are named in the file.

The next question is how you break up your document

into the various layers that you’ll place on the page.

You’ll need to group elements that you want to place

together and give a name to each group so that you

can identify it in your style sheet. Currently, the way

you do this is with HTML’s <DIV> or tags.

<DIV> and are useful whenever you want to

assign an attribute to more than one item. The dif-

ference between them is that <DIV> (division) is used

to group a set of elements (such as a group of para-

graphs), while is used inside an element (to

group a set of words). With CSS positioning, you use

<DIV> and to define each group you want to

position separately in your document. The tags’ id=

attribute lets you give each group a name by which

you can address it from the style sheet.

CSS positioning is a cornerstone of dynamic HTML

(ll76), a group of technologies that lets Web designers

control HTML elements in all sorts of new ways within

the newest browsers. (In fact, CSS positioning is some-

times referred to as DHTML positioning.) In later

chapters, we’ll talk about how CSS positioning can

be used with JavaScript to animate pages and make

them interactive. Here, we’ll just point out that CSS

positioning can give you all the page layout controls of

QuarkXPress or PageMaker. In the long run, it should

Dynamic HTML is the answer to a designer’s prayers. Finally we
can control placement to the pixel. We can create compelling and
dynamic sites that aren’t nightmarish to download. The ability to
layer things has made me the happiest webgeek on earth. The fun
has just begun.
A N N E T T E L O U D O N , C O N S T R U C T

also lead to dramatically simplified HTML coding,

creating a clean and logical way to describe a page’s

layout, with no ambiguity and without using complex

embedded tables and other kinds of troublesome,

nonstandard HTML. Once it’s better supported by

browsers, CSS positioning should finally be the key to

powerful, WYSIWYG page layout for the Web.

Now that you understand how a page’s architecture

can be constructed with CSS positioning, we’ll talk

about how CSS relates to other technologies for con-

trolling a page’s finer points: its typographic layout.

